参考文献:
[1] M. Imani and H. Ghassemian, “An overview on spectral and spatial information fusion for hyperspectral image classification: Current trends and challenges,” Information fusion, vol. 59, pp. 59–83, 2020.
[2] B. Rasti, D. Hong, R. Hang, P. Ghamisi, X. Kang, J. Chanussot, and J. A. Benediktsson, “Feature extraction for hyperspectral imagery: The evolution from shallow to deep: Overview and toolbox,” IEEE Geoscience and Remote Sensing Magazine, vol. 8, no. 4, pp. 60–88, 2020.
[3] S. Li, W. Song, L. Fang, Y. Chen, P. Ghamisi, and J. A. Benediktsson, “Deep learning for hyperspectral image classification: An overview,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 9, pp. 6690–6709, 2019.
[4] D. Hong, B. Zhang, X. Li, Y. Li, C. Li, J. Yao, N. Yokoya, H. Li, P. Ghamisi, X. Jia et al., “Spectralgpt: Spectral remote sensing foundation model,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.
[5] A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile, L. Bruzzone, G. Camps-Valls, J. Chanussot, M. Fauvel, P. Gamba, A. Gualtieri et al., “Recent advances in techniques for hyperspectral image processing,” Remote sensing of environment, vol. 113, pp. S110–S122, 2009.
[6] X. Zhang, S. Tian, G. Wang, X. Tang, J. Feng, and L. Jiao, “Cast: A cascade spectral aware transformer for hyperspectral image change detection,” IEEE Transactions on Geoscience and Remote Sensing, 2023.
[7] Y. Xu, B. Du, F. Zhang, and L. Zhang, “Hyperspectral image classification via a random patches network,” ISPRS journal of photogrammetry and remote sensing, vol. 142, pp. 344–357, 2018.
[8] Z. Zhong, J. Li, Z. Luo, and M. Chapman, “Spectral–spatial residual network for hyperspectral image classification: A 3-d deep learning framework,” IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 2, pp. 847–858, 2017.
[9] M. E. Paoletti, J. M. Haut, J. Plaza, and A. Plaza, “A new deep convolutional neural network for fast hyperspectral image classification,” ISPRS journal of photogrammetry and remote sensing, vol. 145, pp. 120–147, 2018.
[10] Y. Dong, Q. Liu, B. Du, and L. Zhang, “Weighted feature fusion of convolutional neural network and graph attention network for hyperspectral image classification,” IEEE Transactions on Image Processing, vol. 31, pp. 1559–1572, 2022.
[11] D. Hong, L. Gao, J. Yao, B. Zhang, A. Plaza, and J. Chanussot, “Graph convolutional networks for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 7, pp. 5966–5978, 2020.
[12] D. Hong, Z. Han, J. Yao, L. Gao, B. Zhang, A. Plaza, and J. Chanussot, “Spectralformer: Rethinking hyperspectral image classification with transformers,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–15, 2021.
[13] L. Sun, G. Zhao, Y. Zheng, and Z. Wu, “Spectral–spatial feature tokenization transformer for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–14, 2022.
[14] S. K. Roy, A. Deria, C. Shah, J. M. Haut, Q. Du, and A. Plaza, “Spectral–spatial morphological attention transformer for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–15, 2023.
[15] H. Yu, Z. Xu, K. Zheng, D. Hong, H. Yang, and M. Song, “Mstnet: A multilevel spectral–spatial transformer network for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–13, 2022.
[16] L. Liang, Y. Zhang, S. Zhang, J. Li, A. Plaza, and X. Kang, “Fast hyperspectral image classification combining transformers and simambased cnns,” IEEE Transactions on Geoscience and Remote Sensing, 2023.
[17] X. Yang, W. Cao, Y. Lu, and Y. Zhou, “Hyperspectral image transformer classification networks,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–15, 2022.
[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
[19] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” in International Conference on Learning Representations, 2020.
[20] A. Gu and T. Dao, “Mamba: Linear-time sequence modeling with selective state spaces,” arXiv preprint arXiv:2312.00752, 2023.
[21] L. Zhu, B. Liao, Q. Zhang, X. Wang, W. Liu, and X. Wang, “Vision mamba: Efficient visual representation learning with bidirectional state space model,” in Forty-first International Conference on Machine Learning, 2024.
[22] Y. Liu, Y. Tian, Y. Zhao, H. Yu, L. Xie, Y. Wang, Q. Ye, and Y. Liu, “Vmamba: Visual state space model,” arXiv preprint arXiv:2401.10166, 2024.
[23] X. Pei, T. Huang, and C. Xu, “Efficientvmamba: Atrous selective scan for light weight visual mamba,” arXiv preprint arXiv:2403.09977, 2024.
[24] K. Chen, B. Chen, C. Liu, W. Li, Z. Zou, and Z. Shi, “Rsmamba: Remote sensing image classification with state space model,” IEEE Geoscience and Remote Sensing Letters, vol. 21, pp. 1–5, 2024.
[25] J. Ma, F. Li, and B. Wang, “U-mamba: Enhancing long-range dependency for biomedical image segmentation,” arXiv preprint arXiv:2401.04722, 2024.
[26] S. Zhao, H. Chen, X. Zhang, P. Xiao, L. Bai, and W. Ouyang, “Rsmamba for large remote sensing image dense prediction,” arXiv preprint arXiv:2404.02668, 2024.
[27] Z. Xing, T. Ye, Y. Yang, G. Liu, and L. Zhu, “Segmamba: Long-range sequential modeling mamba for 3d medical image segmentation,” arXiv preprint arXiv:2401.13560, 2024.
[28] K. Li, X. Li, Y. Wang, Y. He, Y. Wang, L. Wang, and Y. Qiao, “Videomamba: State space model for efficient video understanding,” in ECCV 2024, 2024.
[29] D. Liang, X. Zhou, X. Wang, X. Zhu, W. Xu, Z. Zou, X. Ye, and X. Bai, “Pointmamba: A simple state space model for point cloud analysis,” arXiv preprint arXiv:2402.10739, 2024.
[30] R. Hang, Q. Liu, D. Hong, and P. Ghamisi, “Cascaded recurrent neural networks for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 8, pp. 5384–5394, 2019.
[31] M. Jiang, Y. Su, L. Gao, A. Plaza, X.-L. Zhao, X. Sun, and G. Liu, “Graphgst: Graph generative structure-aware transformer for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, 2024.
[32] H. Zhang, Y. Li, Y. Jiang, P. Wang, Q. Shen, and C. Shen, “Hyperspectral classification based on lightweight 3-d-cnn with transfer learning,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 8, pp. 5813–5828, 2019.
[33] G. Cheng, Z. Li, J. Han, X. Yao, and L. Guo, “Exploring hierarchical convolutional features for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 11, pp. 6712–6722, 2018.
[34] W. Song, S. Li, L. Fang, and T. Lu, “Hyperspectral image classification with deep feature fusion network,” IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 6, pp. 3173–3184, 2018.
[35] S. K. Roy, G. Krishna, S. R. Dubey, and B. B. Chaudhuri, “Hybridsn: Exploring 3-d–2-d cnn feature hierarchy for hyperspectral image classification,” IEEE Geoscience and Remote Sensing Letters, vol. 17, no. 2, pp. 277–281, 2019.
[36] J. M. Haut, M. E. Paoletti, J. Plaza, A. Plaza, and J. Li, “Hyperspectral image classification using random occlusion data augmentation,” IEEE Geoscience and Remote Sensing Letters, vol. 16, no. 11, pp. 1751–1755, 2019.
[37] W. Zhao, L. Jiao, W. Ma, J. Zhao, J. Zhao, H. Liu, X. Cao, and S. Yang, “Superpixel-based multiple local cnn for panchromatic and multispectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 7, pp. 4141–4156, 2017.
[38] S. Yu, S. Jia, and C. Xu, “Convolutional neural networks for hyperspectral image classification,” Neurocomputing, vol. 219, pp. 88–98, 2017.
[39] L. Mou, X. Lu, X. Li, and X. X. Zhu, “Nonlocal graph convolutional networks for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 12, pp. 8246–8257, 2020.
[40] S. Wan, C. Gong, P. Zhong, S. Pan, G. Li, and J. Yang, “Hyperspectral image classification with context-aware dynamic graph convolutional network,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 1, pp. 597–612, 2020.
[41] Z. Zheng, Y. Zhong, A. Ma, and L. Zhang, “Fpga: Fast patch-free global learning framework for fully end-to-end hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 8, pp. 5612–5626, 2020.
[42] X. Zhang, S. Shang, X. Tang, J. Feng, and L. Jiao, “Spectral partitioning residual network with spatial attention mechanism for hyperspectral image classification,” IEEE transactions on geoscience and remote sensing, vol. 60, pp. 1–14, 2021.
[43] L. Mou, P. Ghamisi, and X. X. Zhu, “Deep recurrent neural networks for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 7, pp. 3639–3655, 2017.
[44] A. Sharma, X. Liu, and X. Yang, “Land cover classification from multitemporal, multi-spectral remotely sensed imagery using patch-based recurrent neural networks,” Neural Networks, vol. 105, pp. 346–355, 2018.
[45] X. He, Y. Chen, and Z. Lin, “Spatial-spectral transformer for hyperspectral image classification,” Remote Sensing, vol. 13, no. 3, p. 498, 2021.
[46] C. Zhao, B. Qin, S. Feng, W. Zhu, W. Sun, W. Li, and X. Jia, “Hyperspectral image classification with multi-attention transformer and adaptive superpixel segmentation-based active learning,” IEEE Transactions on Image Processing, 2023.
[47] Z. Qiu, J. Xu, J. Peng, and W. Sun, “Cross-channel dynamic spatialspectral fusion transformer for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, 2023.
[48] W. Zhou, S.-I. Kamata, H. Wang, and X. Xue, “Multiscanning-based rnntransformer for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, 2023.
[49] A. Gu, T. Dao, S. Ermon, A. Rudra, and C. Re, “Hippo: Recurrent ´ memory with optimal polynomial projections,” Advances in neural information processing systems, vol. 33, pp. 1474–1487, 2020.
[50] A. Gu, K. Goel, and C. Re, “Efficiently modeling long sequences with structured state spaces,” in International Conference on Learning Representations, 2021.
[51] A. Gu, I. Johnson, K. Goel, K. Saab, T. Dao, A. Rudra, and C. Re,´ “Combining recurrent, convolutional, and continuous-time models with linear state space layers,” Advances in neural information processing systems, vol. 34, pp. 572–585, 2021.
[52] J. T. Smith, A. Warrington, and S. Linderman, “Simplified state space layers for sequence modeling,” in The Eleventh International Conference on Learning Representations, 2022.
[53] A. Gupta, A. Gu, and J. Berant, “Diagonal state spaces are as effective as structured state spaces,” Advances in Neural Information Processing Systems, vol. 35, pp. 22 982–22 994, 2022.
[54] J. Ruan and S. Xiang, “Vm-unet: Vision mamba unet for medical image segmentation,” arXiv preprint arXiv:2402.02491, 2024.
[55] J. Liu, H. Yang, H.-Y. Zhou, Y. Xi, L. Yu, Y. Yu, Y. Liang, G. Shi, S. Zhang, H. Zheng et al., “Swin-umamba: Mamba-based unet with imagenet-based pretraining,” arXiv preprint arXiv:2402.03302, 2024.
[56] G. Chen, Y. Huang, J. Xu, B. Pei, Z. Chen, Z. Li, J. Wang, K. Li, T. Lu, and L. Wang, “Video mamba suite: State space model as a versatile alternative for video understanding,” arXiv preprint arXiv:2403.09626, 2024.
[57] X. He, K. Cao, K. Yan, R. Li, C. Xie, J. Zhang, and M. Zhou, “Pan-mamba: Effective pan-sharpening with state space model,” arXiv preprint arXiv:2402.12192, 2024.
[58] H. Chen, J. Song, C. Han, J. Xia, and N. Yokoya, “Changemamba: Remote sensing change detection with spatiotemporal state space model,” IEEE Transactions on Geoscience and Remote Sensing, vol. 62, pp. 1– 20, 2024.
[59] X. Ma, X. Zhang, and M.-O. Pun, “Rs3mamba: Visual state space model for remote sensing image semantic segmentation,” IEEE Geoscience and Remote Sensing Letters, vol. 21, pp. 1–5, 2024.
[60] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in International Conference on Learning Representations, 2018.
[61] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal of machine learning research, vol. 9, no. 11, 2008.