English
登录 注册

Onboard deep lossless and near-lossless predictive coding of hyperspectral images with line-based attention

DOI:10.48550/arXiv.2403.17677CSTR:10441.14.202412.017360
文献基本信息
论文标题:
Onboard deep lossless and near-lossless predictive coding of hyperspectral images with line-based attention
其他标题:
论文语言:
英文
基金项目:
类  型:
期刊
作  者:
Diego Valsesia, Tiziano Bianchi, Enrico Magli
作者单位:
/
摘  要:
Deep learning methods have traditionally been difficult to apply to compression of hyperspectral images onboard of spacecrafts, due to the large computational complexity needed to achieve adequate representational power, as well as the lack of suitable datasets for training and testing. In this paper, we depart from the traditional autoencoder approach and we design a predictive neural network, called LineRWKV, that works recursively line-by-line to limit memory consumption. In order to achieve that, we adopt a novel hybrid attentive-recursive operation that combines the representational advantages of Transformers with the linear complexity and recursive implementation of recurrent neural networks. The compression algorithm performs prediction of each pixel using LineRWKV, followed by entropy coding of the residual. Experiments on the HySpecNet-11k dataset and PRISMA images show that LineRWKV is the first deep-learning method to outperform CCSDS-123.0-B-2 at lossless and near-lossless compression. Promising throughput results are also evaluated on a 7W embedded system.
期刊信息
期刊名称:
arXiv
出版日期:
2024-03-26
卷  数:
期  数:
起始页码:
结束页码:
10
收录信息:
Others 其他类型编码
参考文献:
[1] Consultative Committee for Space Data Systems (CCSDS), “Low Complexity Lossless and Near-Lossless Multispectral and Hyperspectral Image Compression,” Blue Book, no. 2, February 2019. [Online]. Available: https://public.ccsds.org/Pubs/123x0b2c3.pdf [2] M. Hern´andez-Cabronero, A. B. Kiely, M. Klimesh, I. Blanes, J. Ligo, E. Magli, and J. Serra-Sagrist`a, “The CCSDS 123.0-B-2 “Low Complexity Lossless and Near-Lossless Multispectral and Hyperspectral Image Compression” Standard: A comprehensive review,” IEEE Geo science and Remote Sensing Magazine, vol. 9, no. 4, pp. 102–119, 2021. [3] M. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS,” IEEE Transactions on Image Processing, vol. 9, no. 8, pp. 1309–1324, 2000. [4] V. Alves de Oliveira, M. Chabert, T. Oberlin, C. Poulliat, M. Bruno, C. Latry, M. Carlavan, S. Henrot, F. Falzon, and R. Camarero, “Reduced complexity end-to-end variational autoencoder for on board satellite image compression,” Remote Sensing, vol. 13, no. 3, p. 447, 2021. [5] Y. Chong, L. Chen, and S. Pan, “End-to-end joint spectral–spatial compression and reconstruction of hyperspectral images using a 3d convolutional autoencoder,” Journal of Electronic Imaging, vol. 30, no. 4, pp. 041403–041403, 2021. [6] Y. Dua, R. S. Singh, K. Parwani, S. Lunagariya, and V. Kumar, “Convolution neural network based lossy compression of hyperspectral images,” Signal Processing: Image Communication, vol. 95, p. 116255, 2021. [7] R. La Grassa, C. Re, G. Cremonese, and I. Gallo, “Hyperspectral data compression using fully convolutional autoencoder,” Remote Sensing, vol. 14, no. 10, p. 2472, 2022. [8] S. Mijares i Verd´u, J. Ball´ e, V. Laparra, J. Bartrina-Rapesta, M. Hern´ andez-Cabronero, and J. Serra-Sagrist` a, “A scalable reduced complexity compression of hyperspectral remote sensing images using deep learning,” Remote Sensing, vol. 15, no. 18, p. 4422, 2023. [9] B. Peng, E. Alcaide, Q. Anthony, A. Albalak, S. Arcadinho, H. Cao, X. Cheng, M. Chung, M. Grella, K. K. GV et al., “RWKV: Reinventing RNNs for the Transformer Era,” arXiv preprint arXiv:2305.13048, 2023. [10] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017. [11] D. Valsesia, T. Bianchi, and E. Magli, “Hybrid recurrent-attentive neural network for onboard predictive hyperspectral image compression,” in IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2024. [12] L. Santos, L. Berrojo, J. Moreno, J. F. L´opez, and R. Sarmiento, “Multispectral and hyperspectral lossless compressor for space appli cations (hyloc): A low-complexity fpga implementation of the ccsds 123 standard,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 9, no. 2, pp. 757–770, 2015. [13] Consultative Committee for Space Data Systems (CCSDS), “Image Data Compression,” Blue Book, no. 2, September 2017. [Online]. Available: https://public.ccsds.org/Pubs/122x0b2.pdf [14] ——, “Spectral Preprocessing Transform for Multispectral and Hyperspectral Image Compression,” Blue Book, no. 1, September 2017. [Online]. Available: https://public.ccsds.org/Pubs/122x1b1.pdf [15] N. Amrani, J. Serra-Sagrist`a, V. Laparra, M. W. Marcellin, and J. Malo, “Regression wavelet analysis for lossless coding of remote-sensing data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 9, pp. 5616–5627, 2016. [16] S. ´ Alvarez-Cort´es, J. Serra-Sagrist`a, J. Bartrina-Rapesta, and M. W. Marcellin, “Regression wavelet analysis for near-lossless remote sensing data compression,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 2, pp. 790–798, 2019. [17] J. Ball´ e, V. Laparra, and E. P. Simoncelli, “End-to-end optimized image compression,” arXiv preprint arXiv:1611.01704, 2016. [18] L. Zhou, C. Cai, Y. Gao, S. Su, and J. Wu, “Variational autoencoder for low bit-rate image compression,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018, pp. 2617–2620. [19] J. Ball´e, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, “Variational image compression with a scale hyperprior,” in International Conference on Learning Representations, 2018. [20] J. Ball´e, P. A. Chou, D. Minnen, S. Singh, N. Johnston, E. Agustsson, S. J. Hwang, and G. Toderici, “Nonlinear transform coding,” IEEE Journal of Selected Topics in Signal Processing, vol. 15, no. 2, pp. 339–353, 2020. [21] W. Jiang, J. Yang, Y. Zhai, P. Ning, F. Gao, and R. Wang, “MLIC: Multi reference entropy model for learned image compression,” in Proceedings of the 31st ACM International Conference on Multimedia, 2023, pp. 7618–7627. [22] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and L. V. Gool, “Practical full resolution learned lossless image compression,” in Pro ceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 10629–10638. [23] G. Toderici, S. M. O’Malley, S. J. Hwang, D. Vincent, D. Minnen, S. Baluja, M. Covell, and R. Sukthankar, “Variable rate image compres sion with recurrent neural networks,” arXiv preprint arXiv:1511.06085, 2015. [24] K. Islam, L. M. Dang, S. Lee, and H. Moon, “Image compression with recurrent neural network and generalized divisive normalization,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 1875–1879. [25] A. Van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals, A. Graves et al., “Conditional image generation with pixelcnn decoders,” Advances in neural information processing systems, vol. 29, 2016. [26] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997. [27] A. Gu and T. Dao, “Mamba: Linear-time sequence modeling with selective state spaces,” arXiv preprint arXiv:2312.00752, 2023. [28] D. Valsesia and E. Magli, “High-throughput onboard hyperspectral image compression with ground-based cnn reconstruction,” IEEE trans actions on geoscience and remote sensing, vol. 57, no. 12, pp. 9544 9553, 2019. [29] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint arXiv:1607.06450, 2016. [30] Z. Yang, Z. Dai, R. Salakhutdinov, and W. W. Cohen, “Breaking the softmax bottleneck: A high-rank rnn language model,” in International Conference on Learning Representations, 2018. [31] M. H. P. Fuchs and B. Demir, “Hyspecnet-11k: A large-scale hyper spectral dataset for benchmarking learning-based hyperspectral image compression methods,” arXiv preprint arXiv:2306.00385, 2023. [32] J. Kuester, W. Gross, and W. Middelmann, “1d-convolutional autoen coder based hyperspectral data compression,” The International Archives 10 of the Photogrammetry, Remote Sensing and Spatial Information Sci ences, vol. 43, pp. 15–21, 2021. [33] S. Cogliati, F. Sarti, L. Chiarantini, M. Cosi, R. Lorusso, E. Lopinto, F. Miglietta, L. Genesio, L. Guanter, A. Damm et al., “The PRISMA imaging spectroscopy mission: overview and first performance analysis,” Remote sensing of environment, vol. 262, p. 112499, 2021
附件信息
文件名称
大小
上传时间
操作
2403.17677.pdf0.79MB2024-12-19 22:54:18下载

关联推荐信息

数据集(关联文字)

模型(关联文字)

视频(关联文字)

软件(关联文字)

文献(关联文字)

报告(关联文字)

成功

关闭 前往购物车