参考文献:
[1] Consultative Committee for Space Data Systems (CCSDS), “Low Complexity Lossless and Near-Lossless Multispectral and Hyperspectral Image Compression,” Blue Book, no. 2, February 2019. [Online]. Available: https://public.ccsds.org/Pubs/123x0b2c3.pdf
[2] M. Hern´andez-Cabronero, A. B. Kiely, M. Klimesh, I. Blanes, J. Ligo, E. Magli, and J. Serra-Sagrist`a, “The CCSDS 123.0-B-2 “Low Complexity Lossless and Near-Lossless Multispectral and Hyperspectral Image Compression” Standard: A comprehensive review,” IEEE Geo science and Remote Sensing Magazine, vol. 9, no. 4, pp. 102–119, 2021.
[3] M. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS,” IEEE Transactions on Image Processing, vol. 9, no. 8, pp. 1309–1324, 2000.
[4] V. Alves de Oliveira, M. Chabert, T. Oberlin, C. Poulliat, M. Bruno, C. Latry, M. Carlavan, S. Henrot, F. Falzon, and R. Camarero, “Reduced complexity end-to-end variational autoencoder for on board satellite image compression,” Remote Sensing, vol. 13, no. 3, p. 447, 2021.
[5] Y. Chong, L. Chen, and S. Pan, “End-to-end joint spectral–spatial compression and reconstruction of hyperspectral images using a 3d convolutional autoencoder,” Journal of Electronic Imaging, vol. 30, no. 4, pp. 041403–041403, 2021.
[6] Y. Dua, R. S. Singh, K. Parwani, S. Lunagariya, and V. Kumar, “Convolution neural network based lossy compression of hyperspectral images,” Signal Processing: Image Communication, vol. 95, p. 116255, 2021.
[7] R. La Grassa, C. Re, G. Cremonese, and I. Gallo, “Hyperspectral data compression using fully convolutional autoencoder,” Remote Sensing, vol. 14, no. 10, p. 2472, 2022.
[8] S. Mijares i Verd´u, J. Ball´ e, V. Laparra, J. Bartrina-Rapesta, M. Hern´ andez-Cabronero, and J. Serra-Sagrist` a, “A scalable reduced complexity compression of hyperspectral remote sensing images using deep learning,” Remote Sensing, vol. 15, no. 18, p. 4422, 2023.
[9] B. Peng, E. Alcaide, Q. Anthony, A. Albalak, S. Arcadinho, H. Cao, X. Cheng, M. Chung, M. Grella, K. K. GV et al., “RWKV: Reinventing RNNs for the Transformer Era,” arXiv preprint arXiv:2305.13048, 2023.
[10] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
[11] D. Valsesia, T. Bianchi, and E. Magli, “Hybrid recurrent-attentive neural network for onboard predictive hyperspectral image compression,” in IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2024.
[12] L. Santos, L. Berrojo, J. Moreno, J. F. L´opez, and R. Sarmiento, “Multispectral and hyperspectral lossless compressor for space appli cations (hyloc): A low-complexity fpga implementation of the ccsds 123 standard,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 9, no. 2, pp. 757–770, 2015.
[13] Consultative Committee for Space Data Systems (CCSDS), “Image Data Compression,” Blue Book, no. 2, September 2017. [Online]. Available: https://public.ccsds.org/Pubs/122x0b2.pdf
[14] ——, “Spectral Preprocessing Transform for Multispectral and Hyperspectral Image Compression,” Blue Book, no. 1, September 2017. [Online]. Available: https://public.ccsds.org/Pubs/122x1b1.pdf
[15] N. Amrani, J. Serra-Sagrist`a, V. Laparra, M. W. Marcellin, and J. Malo, “Regression wavelet analysis for lossless coding of remote-sensing data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 9, pp. 5616–5627, 2016.
[16] S. ´ Alvarez-Cort´es, J. Serra-Sagrist`a, J. Bartrina-Rapesta, and M. W. Marcellin, “Regression wavelet analysis for near-lossless remote sensing data compression,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 2, pp. 790–798, 2019.
[17] J. Ball´ e, V. Laparra, and E. P. Simoncelli, “End-to-end optimized image compression,” arXiv preprint arXiv:1611.01704, 2016.
[18] L. Zhou, C. Cai, Y. Gao, S. Su, and J. Wu, “Variational autoencoder for low bit-rate image compression,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018, pp. 2617–2620.
[19] J. Ball´e, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, “Variational image compression with a scale hyperprior,” in International Conference on Learning Representations, 2018.
[20] J. Ball´e, P. A. Chou, D. Minnen, S. Singh, N. Johnston, E. Agustsson, S. J. Hwang, and G. Toderici, “Nonlinear transform coding,” IEEE Journal of Selected Topics in Signal Processing, vol. 15, no. 2, pp. 339–353, 2020.
[21] W. Jiang, J. Yang, Y. Zhai, P. Ning, F. Gao, and R. Wang, “MLIC: Multi reference entropy model for learned image compression,” in Proceedings of the 31st ACM International Conference on Multimedia, 2023, pp. 7618–7627.
[22] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and L. V. Gool, “Practical full resolution learned lossless image compression,” in Pro ceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 10629–10638.
[23] G. Toderici, S. M. O’Malley, S. J. Hwang, D. Vincent, D. Minnen, S. Baluja, M. Covell, and R. Sukthankar, “Variable rate image compres sion with recurrent neural networks,” arXiv preprint arXiv:1511.06085, 2015.
[24] K. Islam, L. M. Dang, S. Lee, and H. Moon, “Image compression with recurrent neural network and generalized divisive normalization,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 1875–1879.
[25] A. Van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals, A. Graves et al., “Conditional image generation with pixelcnn decoders,” Advances in neural information processing systems, vol. 29, 2016.
[26] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[27] A. Gu and T. Dao, “Mamba: Linear-time sequence modeling with selective state spaces,” arXiv preprint arXiv:2312.00752, 2023.
[28] D. Valsesia and E. Magli, “High-throughput onboard hyperspectral image compression with ground-based cnn reconstruction,” IEEE trans actions on geoscience and remote sensing, vol. 57, no. 12, pp. 9544 9553, 2019.
[29] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint arXiv:1607.06450, 2016.
[30] Z. Yang, Z. Dai, R. Salakhutdinov, and W. W. Cohen, “Breaking the softmax bottleneck: A high-rank rnn language model,” in International Conference on Learning Representations, 2018.
[31] M. H. P. Fuchs and B. Demir, “Hyspecnet-11k: A large-scale hyper spectral dataset for benchmarking learning-based hyperspectral image compression methods,” arXiv preprint arXiv:2306.00385, 2023.
[32] J. Kuester, W. Gross, and W. Middelmann, “1d-convolutional autoen coder based hyperspectral data compression,” The International Archives 10 of the Photogrammetry, Remote Sensing and Spatial Information Sci ences, vol. 43, pp. 15–21, 2021.
[33] S. Cogliati, F. Sarti, L. Chiarantini, M. Cosi, R. Lorusso, E. Lopinto, F. Miglietta, L. Genesio, L. Guanter, A. Damm et al., “The PRISMA imaging spectroscopy mission: overview and first performance analysis,” Remote sensing of environment, vol. 262, p. 112499, 2021